Menoufiya University Faculty of Engineering Shebin El- Kom Second Semester(Jun) Examination Academic Year: 2014-2015 Date: 7/6/2015

Dept.: Production Engineering Year : Post-Graduate Diploma Subject: Robotics Code : PRE 514 Time Allowed: 3 hours Total Marks : 100 Marks

Allowed Tables and Charts: None Examiner: Dr/ Mohamed Hesham Belal.

Answer All The Following Questions:

Question No.(1):

[25 Mark]

(a)- Robotic systems are generally classified to six groups according to different views. Investigate briefly.

(b)- The wrist of a manipulator is represented by three successive rotations (Roll- Pitch-Yaw) denoted by $(\theta_1, \theta_2, \theta_3)$ respectively as shown in Fig.(1). It is assumed that the arm end-point is stationary and can be considered as the stationary base frame for the wrist.

1)- Obtain the direct kinematic model. 2)- Determine the solution for the three joint

variables for a given tool point orientation matrix A_{E} as follows:

(a)- Explain briefly: the Robot and Robotic- the main parts of an industrial robot.

(b)- For the 4-DOF manipulator arm shown in Fig.(2),and located in its home position.

- 1- Assign frames and tabulate the joint-link parameter,
- 2- Determine the transformation matrices relating successive links,
- 3- Obtain the orientation and position of the end-effector relative to the base,
- 4- Check the correctness of the results and describe it at the home position,
- 5- Compute the position of the end-effector if the joint variable vector is : $q = [45^{\circ} 120^{\circ} 80 \text{ mm } 60^{\circ}]^{\mathsf{T}}$ with : $d_1 = 400 \text{ mm}$, $d_2 = 300 \text{ mm}$, $d_4 = 200 \text{ mm}$.

Question No.(3):

[25 Mark]

(a)- Compare between the rigid domain and flexible domain for dynamic analysis of performance of industrial robot.

(b)- A simplified model of a three axes planar articulated manipulator in rigid domain, as shown in Fig.(3), connected by the three powered joints for the welded end-effector.

- 1- Derive the general form of the Jacobian matrix,
- 2- Derive the equations of motion of the system assuming small vibration about a reference position, and

Page(1/2)

3- Calculate the equivalent actuating moments at the joints to keep the manipulator in static equilibrium.

Question No.(4):

[25 Mark]

(a)- From the first principle , Derive the expressions of the mass and stiffness matrices for the single element in terms of the global reference system.

(b)- Fig.(4) shows the single flexible link manipulator of uniform cross-section diameter D, length L, mass per unit volume ρ and Young's Modulus E. The manipulator having flexible joint O₁ of stiffness coefficient (k_F) and payload of mass (m_P) welded at the tip of the link.

1- Write the local mass and stiffness matrices,

2- Derive the global mass and stiffness matrices,

3- Write-down the equation of motion of the manipulator in detail, and

4- Calculate the equivalent joint torque acting at the shoulder joint.

With my best wishes

This exam measure the following ILOs												
Question No.	Q1-a	Q2-a	Q3-a	Q4-a	Q1-b	Q2-b	Q3-b	Q4-b	Q1-b	Q2-b	Q3-b	Q4-b
	a-2	a-3	a-4	a-3	b-2	b-5	b-2	b-5	c -1	c-2	c-2	c-1
Skills	Knowledge & Understand				Intellectual				Professional			

Page(2/2)