Menoufiya University
Faculty of Engineering
Shebin El- Kom
Second Semester(Jun) Examination Academic Year: 2014-2015 Date: 7/6/2015
Allowed Tables and Charts: None
Examiner: Dr/ Mohamed Hesham Belal.

Answer All The Following Questions: Question No.(1):

[25 Mark]

(a)- Robotic systems are generally classified to six groups according to different views. Investigate briefly.
(b)- The wrist of a manipulator is represented by three successive rotations (Roll- PitchYaw) denoted by $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ respectively as shown in Fig.(1) . It is assumed that the arm end-point is stationary and can be considered as the stationary base frame for the wrist. 1)- Obtain the direct kinematic model. 2)- Determine the solution for the three joint
variables for a given tool point orientation matrix ${\underset{\sim}{E}}^{A}$ as follows:

$$
A_{\sim}=\left[\begin{array}{cccc}
n_{x} & s_{x} & a_{x} & 0 \\
n_{y} & s_{y} & a_{y} & 0 \\
n_{z} & s_{z} & a_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Question No.(2):

Fig.(1)
(a)- Explain briefly: the Robot and Robotic- the main parts of an industrial robot.
(b)- For the 4-DOF manipulator arm shown in Fig.(2),and located in its home position.

1- Assign frames and tabulate the joint-link parameter,
2- Determine the transformation matrices relating successive links,
3- Obtain the orientation and position of the end-effector relative to the base,
4- Check the correctness of the results and describe it at the home position,
5- Compute the position of the end-effector if the joint variable vector is :
$q=\left[45^{\circ} 120^{\circ} 80 \mathrm{~mm} 60^{\circ}\right]^{\top}$ with : $d_{1}=400 \mathrm{~mm}, d_{2}=300 \mathrm{~mm}, \mathrm{~d}_{4}=200 \mathrm{~mm}$.

Question No.(3):

(a)-Compare between the rigid domain and flexible domain for dynamic analysis of performance of industrial robot.
(b)- A simplified model of a three axes planar articulated manipulator in rigid domain, as shown in Fig.(3), connected by the three powered joints for the welded end-effector.

1- Derive the general form of the Jacobian matrix,
2- Derive the equations of motion of the system assuming small vibration about a reference position, and
3- Calculate the equivalent actuating moments at the joints to keep the manipulator in static equilibrium.

Question No.(4):

(a)- From the first principle , Derive the expressions of the mass and stiffness matrices for the single element in terms of the global reference system.
(b)- Fig.(4) shows the single flexible link manipulator of uniform cross-section diameter D, length L, mass per unit volume ρ and Young's Modulus E. The manipulator having flexible joint O_{1} of stiffness coefficient $\left(\mathrm{K}_{\mathrm{F}}\right)$ and payload of mass (m_{P}) welded at the tip of the link.

1 - Write the local mass and stiffness matrices,
2- Derive the global mass and stiffness matrices,
3- Write-down the equation of motion of the manipulator in detail, and

Fig.(3)
Fig.(4)
With my best wishes
This exam measure the following ILOs

Question No.	Q1-a	Q2-a	Q3-a	Q4-a	Q1-b	Q2-b	Q3-b	Q4-b	Q1-b	Q2-b	Q3-b	Q4-b
Skills	a-2	a-3	a-4	a-3	b-2	b-5	b-2	b-5	c-1	c-2	c-2	c-1
	Knowledge \& Understand				Intellectual				Professional			

